If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-93x+120=0
a = 18; b = -93; c = +120;
Δ = b2-4ac
Δ = -932-4·18·120
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-93)-3}{2*18}=\frac{90}{36} =2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-93)+3}{2*18}=\frac{96}{36} =2+2/3 $
| 2/×=x/18 | | -3(3+x)=4(x-6)-4 | | 18x^2+93x-120=0 | | 5x+15+2x=24x+4x | | -3(3+x)=4(x-6)+-4 | | 18x^2+93x+120=0 | | 2(x-5)+8x=30 | | 4=2+(12a) | | 5r+36=5(r+7)+1 | | 4x-3(x+4)=-12 | | 2v=26-4v | | 36=6(u+4) | | 1/4+a=1/3 | | -6(5-3n)=5n+9 | | -7.3-2.5x=5.2 | | -4+8t=28 | | 4(x-8)+3x=17 | | -8+3x=3 | | 3y+3=8y-6 | | 4(y-8)=32 | | 5r+8=-3r | | -7r+20=2r-4(1+3r) | | Y=16x-1-4x^2 | | -7r+20=2r-4(1+3r0 | | 18x^2=15x^2 | | 23=u/2-11 | | 4(2y-33)=28 | | x3−2x2−9x+18=0 | | 8.2x-2.1x=132 | | -9x-8=-6-2x | | 10=6+(0.4t) | | 560+x=1680 |